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A classification of all crystal structures containing closely packed ions is based on the stacking of 
partially or totally occupied hexagonal nets. I t  is shown that the symmetry of the hexagonal net is 
preserved only if the fraction of the net occupied is an integral multiple of 1/(k ~ +kl +/~), where 
k and l are integers. On this basis the plausibility of some existing structures and the non-existence 

of others is discussed. 

Introduction 

Crystal structures in which some ions are closely 
packed while the remaining ones occupy interstices 
may  be described in terms of stacked hexagonal nets, 
each of which is part ial ly or total ly  occupied by ions 
(Iida, 1957; Loeb, 1958; Morris & Loeb, 1960; Loeb, 
1962). 

The description of crystal structures given by Morris 
& Loeb involves the stacking of the nets and the 
distribution of ions over the points of each net. 
The stacking of nets in cubic and hexagonal structures 
is outlined by  the algorithms reviewed in the following 
section. The distribution of ions over the points of 
a hexagonal net  necessitates discrimination between 
these points. Previous articles included subdivision 
into three, four, nine, and twelve subarrays (~[orris 
& Loeb, 1960; Iida, 1957) and into seven subarrays 
(Iida, 1957). In  each of these instances every subarray 
is itself a hexagonal net;  i.e. the symmetry  of the 
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Fig. 1. A subdivided hexagonal net 
(subdivision into three subnets). 

* This research was supported in part by a grant from the 
Westinghouse Educational Foundation to the Department of 
Electrical Engineering at Massachusetts Institute of Tech- 
nology. 

~f Present address: Ledgemont Laboratory, Kennecott 
Copper Corporation, Lexington 73, Mass., U.S.A. 

original net  is preserved but  the area of a unit  mesh 
of a subnet  is an integral multiple of the area of 
a unit  mesh of the original net  (Fig. 1). In the present 
paper we shall derive a general expression for the 
number of hexagonal subarrays into which a hexagonal 
net may  be divided. This expression will eliminate 
certain subdivisions, thus providing rules for generat- 
ing crystal  structures when the chemical formula, 
the mode of packing of the closely packed ions, and 
the coordination of intersti t ial  ions are known. 

Coordinates and stacking of nets 

For a description of crystal  structures in which some 
ions are closely packed, a hexagonal coordinate 
system was defined having its origin on a closely 
packed ion (Morris & Loeb, 1960). The planes 
h= coast, are defined parallel to a plane of closest 
packing; within each closest-packed plane the direc- 
tions u =  coast., v = coast., and w =  coast, coincide 
with closest-packed rows. Adjacent close-packed 
planes differ from each other by  two units in h; 
within any plane h=cons t ,  adjacent close-packed 
rows differ from each other by  three units in u, v, or w. 
The la t ter  coordinates are related by  the expression 
u + v + w = O .  

In  terms of this hexagonal system, the location 
of the centers of the close-packed ions as well as the 
location of the centers of the te t rahedral  and octa- 
hedral interstices between these ions are described by  
the following algorithms: 

vmod3= [f  (h)J,,od3 ; Wmoa3= [f  (h)J,,oda ; 
where 

f ( h ) = 2 h  , 

for structures in which the closely packed ions 
are cubically stacked; (1) 

and 
f (h ) = 4 -  2lh~od a -  21, 

for structures in which the closely packed ions 
are hexagonally stacked. 
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All centers of closely packed ions have hmoa~. = 0; 
all centers of octahedral interstices have brood2 = 1; 
all centers of tetrahedral interstices have hmoa2 = + ~-. 
Tetrahedra whose centers are located in plane 
h~odp= +½ are called 'positive,' while those whose 
centers are in planes hmoa2 = -½ are called 'negative.' 

C h e m i c a l  f o r m u l a  

The numbers of octahedral interstices, of positive 
tetrahedral interstices, and of negative tetrahedral 
interstices all equal the number of closely packed ions. 
Therefore the chemical formula of a crystal in which 
t h e  closely packed ions are denoted by X, the tetra- 
hedrally coordinated ions by A, and the octahedrally 
coordinated ions by B is: 

F(n, x, y )=Ap~nBy~Xn,  (2) 

where x =  fraction of tetrahedral interstices occupied, 
y=fract ion of octahedral interstices occupied, and 
n, 2xn, and yn are integers. 

G e o m e t r i c a l  p o s t u l a t e s  

T h e  distribution of ions over available interstices 
should be such as to minimize electrostatic repulsions 
and maximize entropy. I t  will be postulated here that  
an array of equally charged ions located in the inter- 
stices of an oppositely charged close-packed array 
has minimum free energy when as many interionic 
distances are equal to each other as is permitted by 
geometric constraints. In the distribution of ions over 
the nodes of a hexagonal net this means that  the 
hexagonal symmetry of the net must be preserved; 
increasing the  distance between one pair of ions leads 
to a decrease in other interionic distances, and the 
nature of Coulomb repulsion is such that  the latter 
more than offsets the stabilization due to the former 
effect. We therefore postulate that  clustering of 
equally charged ions would be energetically un- 
favorable. From the entropy point of view clustering 
would also be unfavorable, for entropy is maximized 
by uniform distribution. 

P r i m i t i v e  m e s h e s  

An equilateral parallelogram (rhomb) whose corners 
are adjacent nodes in the hexagonal net can be 

considered as a primitive mesh of the net. The area 
of this mesh will be called a (Fig. 1). 

When all nodes of the hexagonal net are identically 
occupied, then the area of any primitive mesh of t h e  
resulting array equals ~ as well. On the other hand, 
if the nodes are occupied by a variety of different ions, 
or if some of the nodes remain unoccupied, then 
an  array results whose primitive mesh has an area, A,  
equal to an integral multiple of ~. Since we have 
postulated hexagonal symmetry for this array, its 

primitive mesh can be an equilateral parallelogram 
as shown in Fig. 1. 

S u b d i v i s i o n  o f  t h e  h e x a g o n a l  n e t  

The nodes of the hexagonal net can be subdivided into 
a number of subarrays, each of which has hexagonal 
symmetry. In Fig. 2 a representative node Po is 
joined to its six nearest nodes by the six vectors 
+ al, + a2, + (al + ap). The same node P0 is also joined 
to the six nearest nodes belonging to the same subarray 
as does Po by the six vectors + At, + A2, +_ (At+ A2). 

V ,,./ V v , /  

? 

Fig. 2. Subdivision of hexagonal net 
(drawn for k= +3; l= --1). 

If all subarrays are equivalent except for a transla- 
tion, then the number of subarrays constituting the 
hexagonal net equals the ratio of the area of a primitive 
mesh of each subarray to the area of a primitive mesh 
of the hexagonal net. To find this ratio, expand A1 
in terms of al and a2: 

A1 = kal - la2 (3) 

where k and 1 are integers. 
Therefore 

= k a~ + l~a~- 2klal.  a2. 
Since 

and 

al=a2, and a l .ap=-~-a~ ,  
A~=a~(kP+lP+kl) 

A / a  2 2 k 2 = A l / a l =  + k l + l  2. 

Therefore the number of subarrays = k 2 + kl + 12. 

(4) 

F o r b i d d e n  s u b d i v i s i o n s  

Table 1 lists the function (kP+kl+ 12) for a number of 
values of k and 1. (Note that  equation (4) is sym- 

Table 1. Possible numbers of subdivisions 

- 2  
- 1  

0 
1 
2 
3 

of the hexagonal net 

b--> 

--2 --1 0 1 2 3 

12 7 4 3 4 7 
7 3 1 1 3 7 
4 1 0 1 4 9 
3 1 1 3 7 13 
4 3 4 7 12 19 
7 7 9 13 19 27 
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Fig. 3. Subdivision of hexagonal net into nineteen subnets 
(A/o; = 19). 

metrical in/c and l, so that  the table is symmetrical 
about its principal diagonal.) This information, com- 
bined with Fig. 2, provides a means of constructing 
a primitive cell for any array; for instance, an array 
containing 19 distinct subarrays could be constructed 
by choosing k = 2, l = 3. 

Familiar entries in Table 1 are the subdivisions 
into 3, used for corundum; 4, used for spinel and 
cuprite; 12, used for quartz; and 7, mentioned by 
Iida, though not for any particular existing structure. 

:Notable among the missing are subdivisions into 2 
and into 8; it is not possible to subdivide a hexagonal 
net into two or eight hexagonal subnets. The former 
impossibility was surmised by Morris & Loeb in their 
discussion of the olivine structure. 

These forbidden subdivisions are relevant to such 
structures as sphalerite or wurtzite, in which one half 
of all tetrahedral interstices are occupied; as cadmium 
iodide and chloride, in which one half of all octahedral 
interstices are occupied; and as spinel, in which one 
eighth of all tetrahedral and one half of all octahedral 
interstices are occupied. 

Applications to crystal s tructures 

I t  has been pointed out (Morris & Loeb, 1960; Loeb 
& Pearsall, 1963) that  for all the structures under 
consideration models can be built from two basic types 
of building blocks. One type of block is a regular 
tetrahedron, the other a regular octahedron; each 
may but does not necessarily contain a sphere at 
its center. When blocks of these basic types are 
assembled in appropriate permutations and combina- 
tions, models result in which the corners of the blocks 
represent centers of (cubically or hexagonally) closely- 
packed ions, and a sphere at the center of a block, 
if present, represents an interstitially located ion. 
When each octahedron shares two faces with other 
octahedra, the close-packing is hexagonal; when all 
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Fig. 4. The classification system. 
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eight faces of each octahedron are shared with tetra- 
hedra, the structure is cubically close-packed. 

The structure types tha t  can be so represented are 
shown in Fig. 4. In  rock salt and nickel arsenide all 
te trahedral  sites are empty  and all octahedral ones 
occupied. In  (anti) fluorite all tetrahedral  sites are 
occupied. These structures are therefore easily defined 
in terms of the building blocks. The corundum struc- 
ture, with its hexagonally close-packed oxide ions and 
with two-thirds of the octahedral sites occupied by 
aluminum ions, is easily described in terms of a 
subdivision into three hexagonal nets (Loeb, 1962); 
i.e. by setting k = l = l  in equation (4). 

Of special interest here is a comparison of the 
structure of ZnS with tha t  of Zn(CN)2. The chemical 
formulas of these compounds correspond to the 
following constants: in equation (2): For ZnS n = l ,  
x=½, y = 0 ,  while for Zn(CN)2 n=2,  x=¼, y = 0 .  
Accordingly, in Zn(CN)2 the cyanide ions are closely- 
packed and the zinc ions occupy one quarter of all 
tetrahedral  sites; this structure is described by sub- 
division of all hexagonal nets having hmoa ~ = + ½ into 
four subnets (Loeb, 1962), i.e. by setting k = 2 ,  / = 0  
in equation (4). The occupancy of the subnets is such 
tha t  all the occupied sites have the same values of 
w, od~ and Wmod~ (Morris & Loeb, 1960). On the other 
hand, in the two forms of ZnS, sphalerite and wurtzite, 
one half of all tetrahedral  interstices is occupied; 
since equation (4) does not permit subdivision of a 
hexagonal net  into two equivalent hexagonal nets, 
the distribution of Zn ions over available sites is 
such tha t  the nets are alternately completely occupied 
or completely empty:  If the nets having hmod~ = + ½ 
are occupied, all nets having hmod~=--½ are empty, 
and vice versa. This distribution accom~ts for the 
electrical polarity of sphalerite and wurtzite; since 
in zinc cyanide the cations are distributed equally 
over nets having hmod~ = +½ and those having 
hmod~=--½, crystals of zinc cyanide are non-polar. 

A similar distribution is observed in CdC12 and CdI2 
crystals, where the anions are respectively cubically 
and hexagonally close-packed, and the cations occupy 
octahedral interstices. For these compounds n=2,  
x=O, and y = l ;  the distribution of cadmium ions 

over octahedral sites cannot, according to equation (4), 
be accomplished by  subdivision of hexagonal nets. 
Therefore, al ternate nets of octahedral sites are empty  
and occupied in both cadmium chloride and cadmium 
iodide. 

Equation (4) has further applicability in the 
description of the spinel structure, AB204 (n=4,  
x = ~, y = ½). Since subdivision of hexagonal nets into 
two or eight nets is forbidden by  equation (4), the 
distribution of ions over interstices must  alternate.  
As shown by Morris & Loeb, half of the octahedral 
nets are three-quarters occupied, while the remainder 
are one-quarter occupied; of the tetrahedral  nets 
half are one-quarter occupied, the other half empty.  

S u m m a r y  and c o n c l u s i o n s  

Previous descriptions of crystal structures in terms 
of part ial ly or total ly occupied stacked hexagonal nets 
are supplemented by the observation tha t  the distribu- 
tion of ions over the points of a hexagonal net tends 
to preserve the hexagonal symmetry  of the net;  
the number of subnets is thus limited to (k~+kl+12), 
where k and 1 are integers. This l imitation explains 
the lack of uniformity of the ion distribution along the 
threefold symmetry  axis, in particular the resulting 
polarity of sphalerite and the curious alternating 
distribution of ions in spinel. 

The class of crystal structures in which par t  of the 
ions is closely-packed can, on this basis, be logically 
classified. 

I t  is a pleasure to acknowledge stimulating discus- 
sions with Prof. Philippe LeCorbeiller tha t  led to a 
simplification of the derivation of Table 1 and 
equation (4). 
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